Semismoothness of solutions to generalized equations and the Moreau-Yosida regularization
نویسندگان
چکیده
We show that a locally Lipschitz homeomorphism function is semismooth at a given point if and only if its inverse function is semismooth at its image point. We present a sufficient condition for the semismoothness of solutions to generalized equations over cone reducible (nonpolyhedral) convex sets. We prove that the semismoothness of solutions to the Moreau-Yosida regularization of a lower semicontinuous proper convex function is implied by the semismoothness of the metric projector over the epigraph of the convex function.
منابع مشابه
Lagrangian-Dual Functions and Moreau--Yosida Regularization
In this paper, we consider the Lagrangian dual problem of a class of convex optimization problems. We first discuss the semismoothness of the Lagrangian-dual function φ. This property is then used to investigate the second-order properties of the Moreau-Yosida regularization η of the function φ, e.g., the semismoothness of the gradient g of the regularized function η. We show that φ and g are p...
متن کاملA preconditioning proximal Newton method for nondifferentiable convex optimization
We propose a proximal Newton method for solving nondiieren-tiable convex optimization. This method combines the generalized Newton method with Rockafellar's proximal point algorithm. At each step, the proximal point is found approximately and the regu-larization matrix is preconditioned to overcome inexactness of this approximation. We show that such a preconditioning is possible within some ac...
متن کاملProperties of the Moreau-Yosida regularization of a piecewise C2 convex function
In this paper we discuss second-order properties of the Moreau-Yosida regularization F of a piecewise twice continuously differentiable convex function f . We introduce a new constraint qualification in order to prove that the gradient of F is piecewise continuously differentiable. In addition, we discuss conditions, depending on the Hessians of the pieces, that guarantee positive definiteness ...
متن کاملPreconditioners for state-constrained optimal control problems with Moreau-Yosida penalty function
Optimal control problems with partial differential equations as constraints play an important role in many applications. The inclusion of bound constraints for the state variable poses a significant challenge for optimization methods. Our focus here is on the incorporation of the constraints via the Moreau-Yosida regularization technique. This method has been studied recently and has proven to ...
متن کاملSufficient Optimality Conditions for the Moreau-yosida-type Regularization Concept Applied to Semilinear Elliptic Optimal Control Problems with Pointwise State Constraints∗
We develop sufficient optimality conditions for a Moreau-Yosida regularized optimal control problem governed by a semilinear elliptic PDE with pointwise constraints on the state and the control. We make use of the equivalence of a setting of Moreau-Yosida regularization to a special setting of the virtual control concept, for which standard second order sufficient conditions have been shown. Mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 104 شماره
صفحات -
تاریخ انتشار 2005